
Experience with the Johnson-King 
turbulence model in a transonic turbine 
cascade f low solver 
N. B. Wood 
National Power Techno logy and Environmental Centre, Leatherhead, UK 

Experience is described of the application of the Dawes Navier-Stokes solver to a turbine 
test case involving shock-boundary-layer interaction. Modifying the implementation of 
the algebraic eddy-viscosity turbulence model gave improved agreement between the 
predictions and the experimental results. 

In order to improve the predictions still further, the nonequilibrium turbulence model 
of Johnson and King was incorporated into the code. This gave limited further improvement 
in the overall loss prediction, but the base pressure prediction was not improved. Only a 
minor shock-induced separation was predicted, compared with the increasing major 
separation observed in cascade tests with increasing outlet Mach number, although it is 
necessary to be aware of the possible differences between the real test f low and the 
two-dimensional steady f low that was modeled. 

Better prediction of the test f low may require the incorporation of higher-order turbulence 
models, in which the physics of the f low is more fully represented. Additionally, 
three-dimensional and unsteady capability may be needed. 

K e y w o r d s :  fluid dynamics; turbulence models; compressible flow; shock-boundary-layer 
interaction 

I n t r o d u c t i o n  

The advent of so-called Navier-Stokes solvers has already made 
a considerable impact on the conduct of research and develop- 
ment in fluid dynamics. Greater understanding of fluid-flow 
phenomena is already being achieved, for example in computing 
flow features that are not readily accessible by experimental 
means, and reference is sometimes made to the numerical wind 
tunnel. However, the analogy with the wind tunnel is not exact, 
since computation requires an approximate mathematical model 
of the physical process being simulated, whereas in the wind 
tunnel a real model flow is created, albeit one that differs from 
the full-scale flow as a result of wall interference. Differences 
of scale may also require artificial means to induce the wind- 
tunnel flow to behave more like that in full scale. Computational 
means are now being applied to aid the application of model 
flow results to full-scale situations. Nevertheless, just as it 
is necessary to understand the limitations and inaccuracies 
involved in wind-tunnel simulations, so the same is true of 
computational fluid dynamics. In particular, it is necessary to 
be able to gain confidence in the latter by demonstrating the 
ability to compute the important features of real test flows. 

In practice, there are various factors that limit the ability of 
Navier-Stokes codes to compute flows correctly, especially 
turbulent flows. For example, the discretization method adopted 
and the numerical dissipation incorporated can affect both the 
stability and accuracy of the computation. The implicit finite- 
difference time-marching solver used for the present study was 
developed by Dawes, 1 based on the methods of Beam and 
Warming 2 but with modified numerical dissipation and with a 
more efficient solution method. The accuracy of the basic 
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algorithm is second order in space and first order in time. 
However, the time accuracy is not directly relevant in the 
present code, which is marched in time to a steady-state 
solution. 

Before discretization, the Navier-Stokes equations have to be 
simplified, usually by time-averaging the turbulent fluctuation 
terms in the equations. This leads to the appearance of the 
Reynolds stresses, averaged turbulence-related terms that must 
be modeled to achieve closure of the equation set. The terms 
have to be approximated, and the different ways of doing this 
form the general topic of turbulence modeling. There is a big 
range of possibilities in turbulence modeling, but among the 
popular methods for engineering computations are those that 
give effective eddy viscosity. Some more advanced techniques 
involve modeling of the Reynolds stresses, and progress is being 
made with simulation of the large eddies. In the latter case, 
computer limitations mean that the calculation grid cannot be 
made small enough to model the effects of the smallest turbulent 
eddies, so combinations of grid and turbulence models must 
be put together that will adequately model the flow to be 
computed. We are concerned here with eddy-viscosity methods 
in which the grid is required to be fine enough in the boundary 
layer for profiles of relevant parameters to be defined adequately. 
The eddy viscosity, which is a property of the flow rather than 
the fluid, may be provided by algebraic means via estimation 
of characteristic turbulence length and velocity scales, but these 
are local methods that do not take into account the effects of 
streamwise flow development on turbulence structure. This may 
be achieved by more complex means involving ordinary or 
partial differential turbulence transport equations, but there are 
many flow situations where these methods are still inadequate. 

A feature of particular importance in considering the per- 
formance of high-speed turbines is the occurrence of separated 
flows and the ability to predict and control them. 

One phenomenon that can induce flow separation is a shock 
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wave impinging on a bounding surface. The fluid boundary 
layer will be retarded by the adverse pressure gradient imposed 
by the shock wave, and this may result in flow separation. 
The occurrence of the separation and its extent will depend on 
the strength of the shock and the state of the boundary layer. 
This process of shock-boundary-layer interaction has been 
widely studied in the aircraft industry, where it has major 
importance for both economic and stability reasons. 

Transonic and supersonic flows occur also in the downstream 
stages of low pressure (LP) turbines where, therefore, shock- 
induced separation can arise, with associated economic penalties. 

The two-dimensional (2-D) Navier-Stokes implicit solver 
developed by Dawes I incorporates the equilibrium algegraic 
eddy-viscosity turbulence model of Baldwin and Lomax. 3 This 
was used as the starting point in an investigation into the ability 
of this class of program to calculate shock-boundary-layer 
interaction. Further results were then obtained using a method 
in which a turbulence transport equation is introduced to take 
some account of flow history. The experimental results described 
in the following section offered a challenging test case that, it 
was expected, would provide a severe test of the calculation 
methods. 
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Figure 2 Variation of measured energy loss coefficient and base 
pressure coefficient wi th exit Mach number at near-zero incidence 
(inlet angle = 30o) ̀  

Figure 1 VKI-1 turbine blade profile and computation grid (fineness 
reduced to aid clarity) 

A s u i t a b l e  t e s t  c a s e  

A particularly interesting test case that has appeared in the 
literature is the von Karman Institute (VKI) gas turbine blade 
(Figure 1) tested over a range of transonic conditions in four 
different wind tunnels, at DLR Brunswick, DLR G6ttingen, 
Oxford University, and the von Karman Institute. 4 

Actually, results from only one of the facilities (at G6ttingen) 
extended to supersonic Mach numbers. With supersonic Math 
numbers, these results showed the base pressure coefficient 
decreasing markedly and the energy loss coefficient increasing 
at a rate greater than that owing to the base pressure alone, 
as shown in Figure 2. Further, the shock-induced separated 
flow became increasingly unsteady with increasing outlet Math 
numbers. Associated with the increasing Math number, of course, 
would be a shock of increasing strength generated at the 
pressure surface side of the trailing edge and impinging on the 
suction surface where it would be expected to have a strong 
effect on the boundary layer. This was shown in a series of 
schlieren photographs published in an earlier report on the 
G/ittingen tests. 5 The Reynolds number was approximately 
8 x lO s. 

Such a flow structure is typical of the end stages of steam 
turbines, although the trailing edge is relatively thicker in this 
gas turbine geometry. 
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Initial results with the algebraic 
eddy-viscosity model 

The first promising results were obtained for the VKI blade on 
the 91 (quasi-orthogonals)x 51 (quasi-streamlines) grid after 
initial results on a 50 x 21 grid had given loss coefficients two 
to three times those measured. (Figure 1 has a coarse 52 x 31 
grid to aid clarity of presentation.) The general features of the 
flow field (shock waves and wake direction), shown by com- 
puted Mach number contours, were in good agreement with 
Lehthaus 's schlieren photographs for averaged exit Mach num- 
bers up to 1.2, but above this condition the experimental 
cascade exhibited flow separation from the suction surface, 
which was not detectable in the computation results. 

Figure 3 shows some predicted results for the energy loss 
coefficient (~ = 1-(u/ui~) 2, where u and ui, are the effective 
uniform cascade exit velocities for actual and isentropic flows, 
respectively) and base pressure coefficient (cp.b= (Pb-P,,~t)/q, 
where q is the mean dynamic pressure at exit), for a range of 
outlet Math number from just below unity to 1.35. The dashed 
lines here and in Figures 6 and 7 are based on the dashed lines 
of Figure 2 and represent the bounds of the main body of 
experimental data. As can be seen, the trend of base pressure 
is downwards with increasing Mach number, but the base 
pressure coefficient does not fall as rapidly as indicated by the 
experiments. The loss coefficient shows an increasing trend with 
increasing supersonic Mach number, but it is overpredicted 
at sonic outflow and does not increase to the extent shown 
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Figure 3 Variation of energy loss coefficient and base pressure 
coefficient predicted by initial version ofthe program (91 x 51 grid) 
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Figure 4 Form of the turbulent eddy-viscosity distribution across 
the boundary layer, shown as dimensionless kinematic viscosity 7 

by measurements. There are aspects of the grid that require 
further comment, but it is the turbulence model in the program 
that needs to be considered first, for reasons that will become 
apparent. 

The algebraic eddy-viscosity model 
and its implementation 

The viscous terms in the Navier-Stokes equations as solved in 
the Dawes code 1 are time averaged, and the shear stresses are 
modeled via an algebraic eddy-viscosity model based on the 
method of Baldwin and Lomax. 3 This method was itself based 
on the eddy-viscosity boundary-layer model of Cebeci and 
Smith, 6 but with a technique incorporated to avoid having to 
determine explicitly the boundary-layer thickness. This allows 
the method to be used in flows like those in turbomachinery, 
where there are strong velocity gradients outside the boundary 
layer that make it difficult to locate the outer edge and hence to 
obtain a realistic distribution of eddy viscosity. 

The Cebeci-Smith model is a two-layer formulation in which 
the length scale for the inner layer is proportional to the distance 
from the surface. For the outer layer the length scale varies 
with the boundary-layer thickness. Baldwin and Lomax define 
the outer length scale instead via the distance from the surface 
of the maximum value of a velocity scale (vorticity × length 
scale) parameter or of a wake parameter. The form of the 
equilibrium eddy-viscosity distribution (derived from measure- 
ments, e.g., Klebanoff 7) on which these two-layer models are 
based is shown in Figure 4. The decline in eddy viscosity 
towards the outer part of the boundary layer results from the 
intermittency. 

Improvements to the implementation 

As can be seen in Figure 4, the inner-layer eddy viscosity 
increases with distance from the surface, while in the outer layer 
it is represented by a constant multiplied by the intermittency 
function, y. Baldwin and Lomax, following Cebeci and Smith, 
suggest changing from the inner to the outer law at the smallest 
distance from the wall at which the values from the two 
formulations are equal. 

In practice, of course, since the parameters are stored on a 
finite-difference grid, they will not generally be equal at any 
point. Therefore, it is important to avoid the pitfall of setting 
the crossover point where the inner vt is greater than the outer 
v t. This will give a local false peak in the distribution that can 
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cause problems in the maximum-seeking routines invoked later, 
and so it has been avoided. 

The inner eddy viscosity is given in the Baldwin and Lomax 
formulation by 

(v), =/2leo] (1) 

where I is the length scale and o~ is the vorticity (co = du/dy-  dv/dx 
in two dimensions). Usually the inner eddy viscosity is taken 
to be proportional to the shear rate (du/dy + av/dx),, where the 
subscript w signifies wall or boundary-layer coordinates, which 
are required for calculating the eddy viscosity; for the boundary- 
layer approximation, this is taken to be (du/dy),,. Presumably 
the reason why Baldwin and Lomax specify vorticity is that 
this parameter is independent of the orientation of the grid and 
can be taken as approximately equal to (~u/Oy)~, in thin shear 
layers. With the use of the H grid shown in Figure 1, it is 
important to take care that the term dv/dx is computed as a 
true partial derivative. 

For the purposes of the current investigation, co has been 
replaced by (du/dy)w, i.e., the approximate shear rate in 
boundary-layer coordinates, which is considered to be a better 
approximation to the shear rate than is the vorticity. 

The outer velocity scale, F, defined by Baldwin and Lomax 
and whose maximum, F . . . .  is sought in the process introduced 
to avoid searching for the outer edge of the boundary layer, is 

F = yloJl[1 - exp( -  y +/A +)-I (2) 

where y+ is yuX/v, u X being the friction velocity and A + the 
dimensionless van Driest damping parameter (an empirical 
constant). 

Since the parameter F can have large values beyond the 
(unknown) boundary-layer edge, it is necessary to apply a cutoff 
on co according to the following algorithm: 

O.)cu, = (.Omax - -  C e u t  (o ) r a .  x - -  O)min)  ( 3 )  

and co is set to zero if it is less than o9c=. This is not specified 
in the Baldwin-Lomax paper, but appears to be required by 
the method. 

~o,,=i and COr.i, are respectively the maximum and minimum 
values of co occurring between the wall and the midstreamline 
of the blade passage. The results in Figure 3 were obtained 
with the code as received, i.e., with Ccut=0.90, and the effect 
of this parameter on eddy viscosity distribution is shown in 
Figure 5. With Cent-----0.90, the turbulent eddy viscosity is 
computed to be of similar order to the molecular (i.e., laminar) 
viscosity. However, if no cutoff is applied, the program may 
compute distributions of eddy viscosity that fluctuate in the 
streamwise direction between plausible and implausible values 
and that give boundary layers extending to the center stream- 
line. However, it can be seen that the original Cc,t gives a very 
unlikely looking eddy-viscosity profile. Increasing the value of 
Ccut to 0.95 produces a much more believable profile and 
increases the distance from the surface Ym=~ of Fro, by an order 
of magnitude. Increasing Co= further to 0.99 still produces a 
plausible profile, with a further 50% increase in Ym, and a 
doubling of the maximum eddy viscosity, but it occasionally 
gives similar problems to those that arose when there was no 
cutoff. Nevertheless, 0.99 gives the nearest practical approach 
to the case with no cutoff (i.e., C~ut equal to unity), with similar 
results for most of the flow field, so this value was used 
subsequently. Overall, the need for this cutoff was an unsatis- 
factory feature of the Baldwin-Lomax procedure. Figure 5 also 
shows the false local peak in the distribution that occurred at 
the junction between the inner and outer eddy viscosities in the 
original version of the code. 

Finally, it was pointed out by Visbal and Knight s that the 
velocity scale F of Baldwin and Lomax, mentioned earlier, can 
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Figure 5 Effect on eddy-viscosity distribution of applying a cutoff 
on the boundary-layer shear rate 

have genuine double peaks, and that it is the outer of the two 
that should be sought when this happens. This recommendation 
was implemented for all the results that follow. 

Results wi th improved implementat ion 

Figure 6 shows the changes in the results obtained following 
the modifications to the program discussed in the previous 
section. With the same 91 x 51 grid used before, the loss 
coefficients obtained were in extremely good agreement with 
the experimental results over the Mach number range unity to 
1.25, although beyond this the loss was underpredicted, pre- 
sumably because the major suction surface separation seen in 
the experiments was not computed. Moreover, the agreement 
on base pressure coefficients was worsened. 

With only 51 quasi-streamlines (q.s.'s) the q.s. nearest the 
surface could be outside the viscous sublayer for stations near 
the leading edge, which is undesirable in algebraic eddy- 
viscosity methods. Whilst there was a routine in the program 
to deal with this situation, it is more satisfactory to refine the 
grid to ensure that the boundary layer is well defined. Therefore, 
the number of q.s.'s was increased to 91, which had the effect 
of improving the profile definition and of keeping the q.s. 
adjacent to the boundary entirely within the sublayer. Further, 
the disposition of the quasi-orthogonals (q.o.'s) was altered to 
give better definition of the profile leading edge and to give a 
smoother transition from coarse to fine mesh in the supersonic 
zone, where shock waves are expected. This gave a mesh of 
93 x 91, for which the results are shown in Figure 6. It can be 
seen that, despite refining the mesh to allow good definition of 
the boundary-layer profile, the loss level increased near the 
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condition of sonic outflow, so that the overall agreement on 
variation of loss with Mach number was slightly worsened. 

It  was decided to leave the Baldwin and Lomax method at 
this point, since it would always suffer the limitation of being 
an equilibrium turbulence model, and to test a model that takes 
some account of flow history, i.e., the streamwise development 
of the turbulence structure. 

Improved turbulence models 

The most popular turbulence transport model for some years 
has been the Jones and Launder 9 k-e two-equation system, 
involving partial differential equations for the turbulence kinetic 
energy, k, and the dissipation, ~. If these two equations were 
solved simultaneously with the main flow equations, as is 
sometimes done, a new solver would be required. However, 
they could be solved separately, since their only interaction 
with these equations is to supply turbulent eddy-viscosity 
distributions. 

A boundary-layer method that is used extensively in the 
aircraft industry on shock-boundary-layer interaction studies 
is the lag-entrainment momentum integral technique} ° This is 
derived from the turbulence kinetic energy equation of Bradshaw 
et a1.11 Wood was beginning a study to use this as the basis 
for a simple model to be incorporated in a Navier-Stokes solver 
when the boundary-layer method of Johnson and King 12 
appeared in a version applied to a Navier-Stokes solver.13 This 

is, in effect, an update of the Cebeci-Smith boundary-layer 
model using just such a method. Therefore, it has been used 
as the basis for a test in the present application. 

The Johnson and King turbulence mode/ 

In the paper by Johnson and King, ~2 the new model was tested 
in a boundary-layer calculation and compared with results from 
the Cebeci and Smith method. Subsequently, Johnson la incor- 
porated the model into MacCormack's 14 semi-implicit Navier- 
Stokes solver and was able to compare the results with both the 
Cebeci-Smith and the Jones-Launder 9 k-e model, which were 
options in the program. The new model was reported to give 
extremely good agreement with experimental pressure distri- 
butions, with shock position predicted better than with the 
other two models, and the predicted distributions of Reynolds 
shear stresses were better. However, the value of a scaling 
parameter a had to be limited downstream from the shock to 
achieve stability, as discussed in the next section. If the value 
of tr remained at this set limit at the conclusion of the 
computation, as it appeared to be in King's paper, the solution 
in this region obviously should not have been considered as 
converged. 

In an independent study, Benay et al.15 compared predictions 
of shock-boundary-layer interaction using several algebraic 
eddy-viscosity models, the Jones-Launder k-e, and an algebraic 
stress model (ASM) like that of Hanjalic and LaunderJ 6 An 
inverse boundary-layer technique was used in which the dis- 
placement thickness distribution obtained experimentally was 
imposed. This allows the boundary-layer method to be used 
with separated flows, but it places artificial limitations on the 
comparison. Nevertheless, it was interesting to note that, with 
this constraint, the two turbulence transport models gave the 
best agreement with the three experimental test cases, comprising 
one incipient separation and two separated flows, on the basis 
of pressure distribution and distributions of mean velocity and 
Reynolds shear stress. However, the results given by the 
Johnson-King method were not significantly different from the 
last two, except that a longer separation bubble was predicted 
in one case. 

The principal feature of the Johnson-King model is the 
reduction of the turbulence kinetic energy equation from a 
partial differential equation (PDE) to an ordinary differential 
equation (ODE) by solving for maximum k and then, using the 
result that the ratio of k to Reynolds shear stress is broadly 
constant across the shear layer, ~ substituting the m___aximum of 
the latter parameter. In fact, the variable is (--U'V')max rather 
than (-pu'v')ma, and is used in an analogous way to the square 
of the friction velocity. Following Johnson and King, and 
others, ( -  u'v') will be referred to as Reynolds shear stress in the 
remaining discussion. Finally, the equatio_n_n is linearized by 
solving for the inverse square root of (-u'v')m~x along s, the 
near-streamwise locus of the maximum value. 

The ODE is, then, 

d o  al ~(1 9"]÷  CairL,, i i_{a(s)}l/2[] (4) 
ds 2fi,nLm L \  g~q] a~6[O.7--(y/b),n] 

where 

g = ( -  u'v')7. ~/z 

The length scale, L~,, is given by 

Lm = 0.4yrn yn,/6 < 0.225, 

L,, = 0.096 yr,/6 > 0.225, 

geq is the equilibrium value of g(s), and Cdif is a diffusion 
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modeling constant. The subscript m refers to the position where 

(-u'v') has a maximum value. 
The result is used in a two-layer eddy-viscosity model, which, 

following further development by Johnson, ~3 is as follows: 

v, = D2~cy(- u'v')~/2 (Sa) 

v m = tr(s)(0.0168u~6 x y) (Sb) 

v t = v m { 1 - exp( - v,/v m)} (5c) 

where 

D = 1 - exp{ -- ( -  u'v')~/2y/(vA +)} (5d) 

The function iT(s) is a scaling parameter on the outer eddy 
viscosity that matches the algebraic distribution with the 
maximum value given by the ODE. Therefore, the method 
proceeds with an iteration between the algebraic distribution 
generated by the flow and the ODE solution from the previous 
timestep, viz., 

r t 
- - t /  V m 

v , -  (6) 
da/dy,~ 

and the ODE solution obtained in the current timestep. 
The method was developed for external flows where the 

Cebeci-Smith method would be applicable, and it is necessary 
to consider its adaptation to internal flows, taking account of 
the Baldwin-Lomax conversion of the Cebeci-Smith method 
and of experience of the working of the Johnson-King model 
in practice. 

Adaptation of the new turbulence model 
to the cascade f low 

The first point to notice is that, apart from the parameter ix(s), 
the outer eddy viscosity follows the Cebeci-Smith formulation. 
Therefore, for the present application the Baldwin-Lomax 
outer formulation has been adopted, but multiplied by or(s), i.e., 

Vto = tr(s )(O.O168CcvFw AKE~ ) (5e) 

where Ccv is an additional constant and FwAKE is the product 
of a velocity scale and a length scale, usually F . . . .  and the 
distance from the surface of this maximum value, Ym~" 

This avoids the specification of boundary-layer thickness, 
which appears also in the outer length scale L,, and in a 
turbulence diffusion term in one of the coefficients of the ODE. 
Taking the Baldwin-Lomax formulation of the intermittency 
function 7 and comparing it with the Cebeci-Smith formulation 
gives 6 ~ 3.3y . . . .  where y=,,, is the length scale referred to above. 
This approximation is considered to be of similar order to the 
approximations used to derive these two parameters. 

The Johnson-King procedure was followed largely as recom- 
mended by the authors, although some changes were required 
to achieve stability. As suggested, the procedure was started 
from a converged equilibrium turbulence model solution, in 
this case that of the Baldwin-Lomax model. Initially the 
Johnson-King equilibrium model (tr = 1.0, with - u'v" evaluated 
from the Baldwin-Lomax solution) was substituted and run 
for several timesteps. After convergence was established in this 
mode, the solution of the ODE was used to update tr via the 
iteration method described by Johnson.~ 3 However, the recom- 
mended procedure involved attempting to reconcile the values 
of maximum Reynolds stress obtained (1) via direct search 
across the existing profile and (2) as the solution of the ODE, 
by updating the value of a. When the maximum value of 
Reynolds stress occurred in the inner layer, it could prove 
impossible to obtain a converged value of tr. Therefore, in 
addition to updating a, the maximum Reynolds stress given by 
the ODE was substituted into the relation for the inner-layer 
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eddy viscosity. Even with this modification, the process for 
updating ~ could sometimes fail to converge, so Johnson's 
recommendation to set an upper limit to a of 4.0 was followed. 
His recommendation to set an even tighter limit downstream 
from the shock was not followed because this would further 
limit the validity of the solution. Johnson's test case was a 
cylindrical body axially aligned with the flow in a transonic 
wind tunnel, the shock being generated by a bulge in the surface. 
Therefore, the flow ahead of the shock was axially uniform and 
no region of accelerating flow, like that in a turbine cascade, 
existed. 

In the present application, it was the accelerating parts of the 
flow that caused the most difficulty, both ahead of the shock 
on the pressure surface and especially in the expansion around 
the trailing edge on the suction surface. At the time of this 
writing, a stable solution has not been obtained for the latter 
region, and the results given were obtained with the Baldwin- 
Lomax model applied to the pressure surface. This is unsatis- 
factory, but there are further unsatisfactory features of the 
method, as discussed below. Nevertheless, the Johnson-King 
method has been used through the shock-boundary-layer 
interaction region, which was the object of this study. Chokani ~7 
also experienced instabilities in accelerating flows when using 
the method in a different application. He believed that the fault 
lay in the approximate terms introduced by Johnson and King 
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into the turbulence energy equation, 4 and considered that 
experimentation with alternative terms, such as those intro- 
duced by Green et al., 1° might bear fruit. However, the method 
relies on an inconsistency, which is the attempt to alter the 
magnitude of an equilibrium distribution to match the value 
of a single point in a nonequilibrium distribution, which in 
principle may be different in form. Moreover, the principle of 
the similarity in the distributions of turbulence kinetic energy 
and Reynolds stress, on which the method relies, is also 
dependent on the boundary layer being near equilibrium. 

Results with the Johnson and King turbulence model  

Figure 7 shows the loss coefficients obtained from a computation 
on a 91 x 93 grid, as used in the previous example. It can be 
seen that the main effect was to improve the prediction for 
near-sonic outflow, with overall levels very similar to those 
obtained with the Baldwin-Lomax model on the finer grids. 
The base pressure results were similar to those obtained on the 
93 x 91 grid with Baldwin-Lomax. 

Figures 8 and 9 show Mach number contours computed at 
isentropic exit Mach numbers of 1.10 and 1.30 (1.06 and 1.22 
actual). The development of the passage shock with increasing 
Mach number can be seen, but the large suction surface 
separation observed in the cascade tests was not computed. 

Figure 9 Mach number contours on 93 x 91 grid. Isentropic exit 
Mach number= 1.30 (Johnson-King turbulence model) 

Figure 8 Mech number contours on 93 x 91 grid. Isentropic exit 
Mach number = 1.1 0 (Johnson-King turbulence model) 

Small separation regions were computed at higher Mach 
numbers. The shocks are captured typically within three cells, 
but the skewed cells inherent in the H grid give rise to 
considerable streamwise smearing unless the shock is aligned 
with the grid. Therefore, while the algorithm gives good shock 
capture, its performance is limited in the present implementation 
by being allied to a fixed H grid. Clearly, introduction of an 
adaptive grid is desirable to compute flows in which shock 
waves are formed. 

It should be pointed out that validation of two-dimensional 
(2-D) flow solvers against experimental turbomachinery cascade 
test cases brings special problems, as pointed out by Fottner.lS 
In comparing results from nominally 2-D cascade tests, particu- 
lady where the trailing edges are blunt, there may be significant 
global differences between the test flow and the computed flow; 
for example: 

• the test flow may not be truly 2-D; 
• the computed flow converges to a steady solution, while the 

wake from a blunt trailing edge contains a cyclic component 
for most flow regimes; 

• the test flow considered here became more unsteady with 
increasing exit Math number. 

These features could be investigated by modeling the test flow 
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with a three-dimensional (3-D) computation in which both 
steady and unsteady solutions are possible. 

As mentioned in the previous section, there have been 
problems with the stability of the Johnson-King method when 
applied to the expansion around the trailing edge, so the results 
presented in Figure 7 were obtained with the pressure surface 
and trailing-edge conditions computed via the Baldwin-Lomax 
method. Further work is required to improve the ability of the 
Johnson-King model to cope successfully with flows of this 
type. However, it is likely that the method is restricted to 
near-equilibrium flows, and the time might be better spent on 
a higher-order model. For  example, a two-equation model from 
which the eddy-viscosity distribution may be derived should 
be more stable and, while the predictions of Reynolds stresses 
may in some cases be little better than those obtained with the 
Johnson-King model, the profiles would be less constrained. 
Moreover, the former class of model incorporates more of the 
physics of the problem and should be generally more reliable. 

Conclusions 

Experience has been described on the application of the Dawes 
Navier-Stokes solver 1 to a transonic turbine cascade test case 
involving shock-boundary-layer interaction. Improved imple- 
mentation of the Baldwin-Lomax 3 algebraic turbulence model, 
coupled with grid refinement, gave predictions that were in 
better agreement with the experimental results than initial 
computations. 

In an attempt to improve the predictions still further, the 
nonequilibrium turbulence model of Johnson and King, 12 em- 
ploying a single ODE for the streamwise evolution of the peak 
turbulence kinetic energy and algebraic laws for its transverse 
distribution and for the dissipation, was incorporated into the 
.code. Although there appears to be a fundamental inconsistency 
in this model, it gave limited further improvement in the overall 
loss prediction, but the base pressure prediction was not 
improved. Moreover, with increasing exit Mach number only 
a limited shock-induced separation was predicted, compared 
with the increasing major separation observed in cascade tests. 
However, it is necessary to maintain awareness of the differences 
between the real test flow and the 2-D steady flow that was 
modeled. 

Necessary to the use of both the Baldwin-Lomax and the 
Johnson-King models were stops in the computation, which 
were required to prevent nonphysical results in the former 
and instability in the latter method. The use of the stop in 
the Johnson-King model, in the manner recommended by 
Johnson, la means that valid solutions cannot always be obtained 
downstream of shock waves. For  the case presented here, which 
represents quite a severe test, the Johnson-King model was not 
stabilized on the pressure surface by the authors'  recommended 
procedure. It is suggested that the Johnson-King model is 
suitable only for flows where the boundary layer remains near 
equilibrium. 

Better prediction of the present test flow will require the 
incorporation of higher-order turbulence models, in which the 
physics of the flow is more adequately represented. Additionally, 
3-D and unsteady capability may be needed. 

Experience with the Johnson-King turbulence model: N. B. Wood 
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